

Huntington District

Rock Anchor Workshop

Bluestone Lake Dam Safety Assurance Anchor Design

18 September 2002

Huntington District

- Dam Overview
- DSA Overview
- **General Geology**
- The Need for Anchors

ANCHOR DESIGN

- The Effects of Anchors on Uplift
- Rock Strengths
- Anchor Bond Zone and Depth Design
- Ongoing Studies

Presentation Overview

y Corps neers Location

Bluestone Dam – Existing Project

- Concrete gravity dam
 - 165' high
 - 2060' long
- Outlet works
 - Sluices
 - Gated spillway
- Penstocks

Bluestone Dam – Existing Project

Huntington District

- Concrete Gravity Dam 1940's
- Length 2,060 ft, Height 165'
- Top of Dam Elevation 1,535"
- Spillway Crest Elevation 1,490'

El. 1410.0°

Current

Grout

Curtain

Inspection Gallery El. 1375.0'

Penstocks Area

Huntington District

Project Features

- 2 Lane Bridge
- Thrust Blocks
- Extending Penstocks
- Sacrificial Bulkheads

Bluestone DSA Phase I

Bridge

Bluestone DSA Phase II

Huntington District

New monolith (not shown)

- Project Features
 - Anchors (290+)
 - Parapet Wall
 - Rt 20 Gate Closure
 - Scour Protection
 - New and modified training walls
 - Scour protection

Anchors not shown

Geology

of Engineers
Huntington District

- The dam site and vicinity are underlain by Mississippian age rock
- Dam site is in the Hinton Formation
- Mauch Chunk Group
- The abutments are comprised of interstratified shales, siltstones and sandstones
- Dam is founded on the Stoney Gap Sandstone
- Bellepoint Syncline strikes perpendicular to the dam through the right abutment

Exploration 1936

Exploration 1936

Construction Photo Mon. 17 - 1943

Huntington District

US Army Corps Construction Photo Mon. 21 - 1943

Construction Photo 2001

Foundation Conditions

Construction Events

- * Consolidation Grouting, 879 borings averaging 45', using 89,666 bags of cement.
- * Various grout curtains,815 borings, using73,086 bags of cement
- * Gouge Zones, 18" thick, in Monoliths 11 through16

Foundation Conditions

The Need For Anchors

Comments from the 1969 First Periodic Inspection Report

- "A study should be made to determine if the powerhouse excavation is detrimental to the safety of the dam."
- "A stability check of the concrete sections should be made using current criteria."

Penstocks Area

Huntington District

4+00 N

3+00 N

Dam Sta. 7+76

2+00 N

Anchor Design

- The effects of anchors on uplift
- Rock Strengths
- Anchor depth
- Bond zone development
- Ongoing field study

Huntington District

Effects of anchors on uplift

Huntington District

Effects of anchors on uplift

Drain Efficiency with Proposed Anchor Designs

1. Number of anchors per monolith

2. Diameter of borehole

3. Grout penetration

4. Location in the foundation of each anchor

Section A-A

1ultiplier for Zone 4 = 3

Evaluation of Foundation

Evaluation of Foundation

Evaluation of Foundation

One Corps, One Regiment, One Team

US Army Corps of Engineers Huntington District

Evaluation of Foundation

One Corps, One Regiment, One Team

US Army of Engine
Huntington [

Early shear test apparatus

Modern USACE Designed Shear Machine One Corps, One Regiment, One Team

Bond Stress Schematic

Original Design Parameters for Rock

Intact Rock Strengths from 1936 Design (No Natural Fracture Strengths Tested)

Sandstone

C = 60 psi Phi = 34

Laminated Rock

C = 60 psi Phi = 35

Shale

C = 60 psi Phi = 0

Rock Strength Parameters 2002

Huntington District

District	Intact	Natural	Smooth	Grout on	Working	Allowable	Modulus	Average	Unit
	Peak	Fracture	Sawn Surface	Rock	Bond Strength	Bearing	of	Poisson's	Weight
	(ф)	(þ)	(ф)	(ф)			Deformation	Ratio	
	(c)	(c)	(c)	(c)			(x10^6)		
Shale	25	19	14	17					
Carbonaceous	6 psi	2 psi	O psi	16 psi	50 psi	202 psi	1.016	0.34	167 pcf
	27	22	17	23					
Siltstone gray	20 psi	3 psi	O psi	40 psi	50 psi	301 psi	1.057	0.31	169 pcf
	37	29	22	29					
Siltstone maroon	14 psi	2 psi	O psi	15 psi	55 psi	355 psi	0.716	0.26	172 pcf
Interbedded	25 (1)	19 (1)	14 (1)	17 (1)	(2)	(1)			(1)
SS & SH	6 psi	2 psi	O psi	16 psi	130 psi	202 psi	N/A	N/A	167 pcf
Interbedded	27 (1)	22 (1)	17 (1)	23 (1)	(2)	(1)			(1)
SS & SLS gray	20 psi	3 psi	O psi	40 psi	130 psi	301psi	N/A	N/A	169 pcf
	60	27	26	45					
Sandstone	70 psi	6 psi	O psi	135 psi	230 psi	1842 psi	3.613	0.25	172 pcf
Orthoquartzite	65	30	27.5	50					
With Discontinuities	200 psi	11 psi	1.5	40 psi	200 psi	1702 psi	4.032	0.104	160 pcf
Orthoquartzite	46	32	27.5	50					
Interbedded shale	28 psi	6 psi	1.5	40 psi	130 psi	668 psi	1.539	0.165	165 pcf
Claystone	N/A	N/A	N/A	N/A	50 psi	N/A	N/A	N/A	N/A
		13							
Broken Zone	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Huntington District

Anchor Design

Anchor Depth and Bond Zone Design

Huntington District

Typical Multi-Strand Anchor

BLUESTONE DSA	MON 46	2-45deg and 2 vertical anchors		
Each anchor has 61 strands, 2 row, with anchors sp	aced 8.33 feet apa	art.		
.06 inch strand, with design load 35.2 kips	# of strands	Design load kips Max test load kips		3
Per strand	1	35.2	46.9	
Per anchor	61	2147.2	2860.9	
Anchors per monolith	4	8588.8		
NALYSIS FOR TENSION ANCHOR SYSTEMS: ANCHOR DE	PTHS (EM 1110-	1-2908)		
Description		Symbol	Value	
S = factor of safety		FS=	4	
= rock mass cohesion intercept*		C=	9536.0	psf
= anchor force required for stability		F=	2147200	pounds
r = unit weight of rock		W=	102.6	pcf
= anchor spacing		s=	9	ft
= row spacing (for anchors with multiple rows)		 	20	ft
Application		Formula		Results
ingle anchors in competent rock		sqrt(FS*F/c*3.14	159)	16.9
ingle row of anchors in competent rock		(FS*F)/cs		100.
nultiple row of anchors in competent rock, with a factor of safet	y of 1.5	(FS*F)/wls		174.3989604
ingle anchor in fractured rock, with a factor of safety of 1.5		cbrt((3FS*F)/(w*3	3.14159))	31.
ingle row of anchors in fractured rock, with a factor of safety of	1.5	sqrt(FS*F/ws)		59.
nultiple row of anchors in fractured rock, with a factor of safety	of 1.5	(FS*F)/wls		174.3989604
c= a weighted average of the cross bed shear strength				
ingle anchor in fractured rock with the compined force of all the	anchors in that a	cbrt((3FS*F)/(w*3	3.14159))	49.3

	BLUESTONE DSA		10-45deg		
Each anch	or has 61 strands, 3 rows, with anchors s	paced 9 feet apai	t, rows spaced 10	feet	
.06 inch str	.06 inch strand, with design load 35.2 kips		# of strands Design load kips N		3
	Per strand	1	35.2	46.816	
	Per anchor	61	2147.2	2855.776	
	Anchors per monolith		21472		
NALYSIS FOR TENS	SION ANCHOR SYSTEMS : ANCHOR DE	PTHS (EM 1110	-1-2908)		
Description	n		Symbol	Value	
S = factor of safety			FS=	4	
= rock mass cohesi	on intercept*		c=	9536.0	psf
= anchor force required for stability			F=	2147200	pounds
= unit weight of rock	(w=	102.6	pcf
= anchor spacing			s=	9	ft
= row spacing (for an	chors with multiple rows)		l=	10	ft
Applicatio			Formula		Results
ingle anchors in competent rock			sqrt(FS*F/c*3.14159)		16.
ingle row of anchors i	gle row of anchors in competent rock		(FS*F)/cs		100.
nultiple row of anchors	s in competent rock, with a factor of safet;	y of 1.5	(FS*F)/wls		348.797920
ingle anchor in fractu	red rock, with a factor of safety of 1.5		cbrt((3FS*F)/(w*3	3.14159))	31.
ingle row of anchors i	in fractured rock, with a factor of safety of	1.5	sqrt(FS*F/ws)		59.
nultiple row of anchors in fractured rock, with a factor of safety of		of 1.5	(FS*F)/wls		348.797920
c= a weighted averag	ge of the cross bed shear strength				
	-				
ingle anchor in fractu	red rock with the compined force of all the	anchors in that	a cbrt((3FS*F)/(w*3	3.14159))	66.

CALCULATING BOND LENGTHS FOR I	ROCK ANCHOR S	SYSTEM			
ROCK TYPES PRESENT	AVG. THICKNESS (ft.)		BOND STRENGTH (psi)		
Orthoquartzite with Discontinuities	12.00		200	(test)	
Interbedded Orthoquartzite and Shale	28.00		130	(test)	
Claystone (lower)	0.00		50	(test)	
TOTAL THICKNESS OF BOND ZONE:	40	feet			
	WEIGHTED MEA	 .N:	151	psi	
			Working	Bond Strength	
COMPARISONS - VARYING HOL	E DIAMETERS:				
COMPOSITE LITHOLOGY using working	bond strength, an	l d various diamete	ers		
MAXIMUM KIPS:	2861	2861	2861	2861	
ANCHOR BOND STRENGTH (CHOSEN):		151	151	151	
HOLE DIAMETER (in.):	14.00	14.50	15.00	15.50	
RADIUS	7.00	7.25	7.50	7.75	
BOND AREA REQ'D. (sq. in.):	18946.36	18946.36	18946.36	18946.36	
ANCHOR BOND LENGTH (in.):	431	416	402	389	
ANCHOR BOND LENGTH (ft.):	35.9	34.7	33.5	32.4	

Huntington District

Anchor Design

Huntington District

Huntington District

Ongoing Studies

- Full Scale Field Anchor Testing
 - Confirm Bond Strengths
 - Consolidation Grout Designs
 - Constructability & Production Rates
 - *Energy Transfer of Single groutingVS Two Stage grouting

Huntington District

Field Study

- Install Four 61 Strand Production Anchors
 - Two from top of dam and instrumented (8°)
 - Two from face of dam (45°)
 - Corrosion protection is 10" corrugated polyethylene pipe
 - Bond zones forty feet.
 - Stressed lengths 150 to 180 feet.

Field Study (cont.)

- Install Eight Bond Stress Test Anchors
 - 18 strand anchors in 5" holes.
 - Bond zones 10'.
 - Load to, or near, bond failure.
 - 4 lithologies tested.
 - Parallel lab pull-out tests for comparison

Casagrande C12

Drill Setup on Anchor BDA-46-2

Huntington District

US Army Corps 18" Down The Hole Hammer

Starter Guide

18" Hammer Aligned in Starter
Guide

18" Hammer in Action

Huntington District

US Army Corps 18" Guide Boring Completed

38" concentric Hammer

38" concentric Hammer

38" concentric Hammer

38" Recess

Sub-Bearing Plate and Trumpet

Sub-Bearing Plate and Trumpet

Huntington District

Bearing Plate

Installation and Alignment

Installation and Alignment

Installation and Alignment

15" Hammer & Guide

Huntington District

Huntington District

Corrugated

Corrugated

Strain Gauges

Huntington District

Strain Gauges

61 Strand Anchor Huntington Distri

18 Strand Anchor

18 Strand Anchor Installation

US Army Corps of Engineers

Huntington District

Grouting 18 Strand

Grouting 18 Strand

Huntington District

Questions?